3.337 \(\int (d \cos (e+f x))^n \sin ^m(e+f x) \, dx\)

Optimal. Leaf size=85 \[ -\frac{\sin ^{m-1}(e+f x) \sin ^2(e+f x)^{\frac{1-m}{2}} (d \cos (e+f x))^{n+1} \, _2F_1\left (\frac{1-m}{2},\frac{n+1}{2};\frac{n+3}{2};\cos ^2(e+f x)\right )}{d f (n+1)} \]

[Out]

-(((d*Cos[e + f*x])^(1 + n)*Hypergeometric2F1[(1 - m)/2, (1 + n)/2, (3 + n)/2, Cos[e + f*x]^2]*Sin[e + f*x]^(-
1 + m)*(Sin[e + f*x]^2)^((1 - m)/2))/(d*f*(1 + n)))

________________________________________________________________________________________

Rubi [A]  time = 0.0445437, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.053, Rules used = {2576} \[ -\frac{\sin ^{m-1}(e+f x) \sin ^2(e+f x)^{\frac{1-m}{2}} (d \cos (e+f x))^{n+1} \, _2F_1\left (\frac{1-m}{2},\frac{n+1}{2};\frac{n+3}{2};\cos ^2(e+f x)\right )}{d f (n+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d*Cos[e + f*x])^n*Sin[e + f*x]^m,x]

[Out]

-(((d*Cos[e + f*x])^(1 + n)*Hypergeometric2F1[(1 - m)/2, (1 + n)/2, (3 + n)/2, Cos[e + f*x]^2]*Sin[e + f*x]^(-
1 + m)*(Sin[e + f*x]^2)^((1 - m)/2))/(d*f*(1 + n)))

Rule 2576

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^(2*IntPar
t[(n - 1)/2] + 1)*(b*Sin[e + f*x])^(2*FracPart[(n - 1)/2])*(a*Cos[e + f*x])^(m + 1)*Hypergeometric2F1[(1 + m)/
2, (1 - n)/2, (3 + m)/2, Cos[e + f*x]^2])/(a*f*(m + 1)*(Sin[e + f*x]^2)^FracPart[(n - 1)/2]), x] /; FreeQ[{a,
b, e, f, m, n}, x] && SimplerQ[n, m]

Rubi steps

\begin{align*} \int (d \cos (e+f x))^n \sin ^m(e+f x) \, dx &=-\frac{(d \cos (e+f x))^{1+n} \, _2F_1\left (\frac{1-m}{2},\frac{1+n}{2};\frac{3+n}{2};\cos ^2(e+f x)\right ) \sin ^{-1+m}(e+f x) \sin ^2(e+f x)^{\frac{1-m}{2}}}{d f (1+n)}\\ \end{align*}

Mathematica [A]  time = 0.116539, size = 82, normalized size = 0.96 \[ \frac{d \sin ^{m+1}(e+f x) \cos ^2(e+f x)^{\frac{1-n}{2}} (d \cos (e+f x))^{n-1} \, _2F_1\left (\frac{m+1}{2},\frac{1-n}{2};\frac{m+3}{2};\sin ^2(e+f x)\right )}{f (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Cos[e + f*x])^n*Sin[e + f*x]^m,x]

[Out]

(d*(d*Cos[e + f*x])^(-1 + n)*(Cos[e + f*x]^2)^((1 - n)/2)*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, S
in[e + f*x]^2]*Sin[e + f*x]^(1 + m))/(f*(1 + m))

________________________________________________________________________________________

Maple [F]  time = 0.573, size = 0, normalized size = 0. \begin{align*} \int \left ( d\cos \left ( fx+e \right ) \right ) ^{n} \left ( \sin \left ( fx+e \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*cos(f*x+e))^n*sin(f*x+e)^m,x)

[Out]

int((d*cos(f*x+e))^n*sin(f*x+e)^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cos \left (f x + e\right )\right )^{n} \sin \left (f x + e\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))^n*sin(f*x+e)^m,x, algorithm="maxima")

[Out]

integrate((d*cos(f*x + e))^n*sin(f*x + e)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (d \cos \left (f x + e\right )\right )^{n} \sin \left (f x + e\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))^n*sin(f*x+e)^m,x, algorithm="fricas")

[Out]

integral((d*cos(f*x + e))^n*sin(f*x + e)^m, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cos{\left (e + f x \right )}\right )^{n} \sin ^{m}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))**n*sin(f*x+e)**m,x)

[Out]

Integral((d*cos(e + f*x))**n*sin(e + f*x)**m, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cos \left (f x + e\right )\right )^{n} \sin \left (f x + e\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))^n*sin(f*x+e)^m,x, algorithm="giac")

[Out]

integrate((d*cos(f*x + e))^n*sin(f*x + e)^m, x)